Students Earning an Associate Degree as a First Credential Who Subsequently Earned a Bachelor’s Degree

Students earning an associate degree as a first credential who subsequently earned a bachelor’s degree

Source: National Student Clearinghouse, “Snapshot Report Degree Pathways,” Spring 2015. Note: Based on students whose first postsecondary credential was an associate degree earned between July 1, 2008, and June 30, 2009. Student age refers to the age when the first credential was awarded. Subsequent credentials are limited to credentials completed within six years of the first credential award date.
TRANSFORMATIVE LEARNING

Transformative Learning Through Literature: The Bard, the Greeks, the Geeks

Can students have transformative learning experiences as a result of reading fiction? If so, how can faculty set up that process? Is anyone doing research about this?

Whether Hamlet (Bates, 2012), or Sophocles' Ajax (Zuger, 2015), or a story about a socially clumsy college freshman (Kaufman & Libby, 2012), yes, literature can transform; yes, faculty are designing such transformative experiences; and, yes, a body of research exists to support this approach to Transformative Learning.

In their 2015 article, Hoggan and Cranton conclude that

[...]he distinguishing role of fiction in promoting transformative learning is that it serves as an intellectual and emotional catalyst. The reading of fiction has the potential to arouse strong emotional responses and to encourage critical reflection on habits of mind, both of which are central to a transformative learning experience. (p. 22)

And Leavy, 2013, says, “Through the pleasure and at times the pain of confronting emotionally charged truths, the process of reading fiction can be transformative. . . . Fiction is engaged” (p. 20).

We all have probably felt the power of a transformative realization prompted by a work of fiction. Harper Lee’s To Kill a Mockingbird (1960) continues to be taught in schools because of its ability to open important conversations among young minds and to challenge unexamined assumptions, which are hallmarks of TL.

That fiction has had an important impact on some of history’s greatest minds is undeniable. For instance, Nikola Tesla credited Abafi by Miklós Jósika (1854) as prompting a transformation of self that produced the critical change necessary for Tesla to drop bad habits and conception of self and life purpose that would have unequivocally prevented him from becoming the genius inventor he became:

On one occasion I came across a novel entitled “Abafi” (the Son of Aba), a Serbian translation of a well known Hungarian writer, Jósika. This work somehow awakened my dormant powers of will and I began to practise self-control. At first my resolutions faded like snow in April, but in a little while I conquered my weakness and felt a pleasure I never knew before — that of doing as I willed. (Tesla, 1919, p. 14)
In their article, “Promoting Transformative Learning Through Reading Fiction,” (2015), co-authors Hoggan and Cranton conducted research to find out if students' reflective writings after a fiction-reading assignment and discussion included markers for transformation. Their thesis is that reading fiction can “potentially shape the way readers make sense of themselves and their experiences. In this way, the reading of fiction has the potential to contribute to the process of transformative learning” (Hoggan & Cranton, 2015, p. 8).

Cranton and co-author Randee Lawrence (2015) dive deeper, though, in their book, A Novel Idea: Researching Transformative Learning in Fiction. In that work, they describe a process of closely examining the transformations experienced by characters in such novels as The Color Purple and The Accidental Tourist. Then, they examine these transformations by setting up dialogues among the characters, building the dialogue as they put themselves in the characters’ shoes in order to explore what is at the root of the characters’ transformations. The resulting fictional conversations are quite revelatory about the forces of change that ultimately create transformations in the characters’ lives.

This process can be helpful when faculty seek to help students dig out the important realizations about life and one’s own sense of self as a result of reading, and reflecting upon, powerful fiction.

Cranton and Lawrence’s process (2015) owes much to the work of Kaufman and Libby (2012), who researched the ways that engagement with fiction can spark transformation. For them, the process of “experience-taking” is one step beyond the process of perspective-taking when trying to understand others or fictional characters. Experience-taking, “the imaginative process of spontaneously assuming the identity of a character in a narrative and simulating that character’s thoughts, emotions, behaviors, goals, and traits as if they were one’s own” (p. 1) can be truly transformative. In six different studies, they investigated “the merger between self and other that occurs during experience-taking” to produce “changes in self-judgments, attitudes, and behavior that align with the character’s” (p. 1).

Students’ engagement with fiction can be profound if they connect strongly with a character, in a sense becoming a character as they experience the narrative. Among other reasons, this is behind a more expansive collection of fiction used in college literature classes — it is far easier for students to connect with some character if the range of stories and characters is greater.

However, the fascinating research done by Kaufman and Libby showed them that revealing a character’s “outgroup” status later in the story instead of earlier had a definite impact on whether students were more likely to engage in experience-taking and consequently experience a transformative moment. Outgroup status is created by differences about the character that would make
him or her an outcast among the other characters in the story.

For instance, Brokeback Mountain (Proulx, 1997), with its description of two conflicted homosexual cowboys, allowed many heterosexual readers to experience life from a different perspective. But Kaufman and Libby’s research (2012) showed that withholding information about a character’s difference until after the narrative has built empathy for the character under the reader’s usual assumptions made it more likely that students would experience a transformation in their thinking about such outgroups. For instance, “doctor” or “surgeon” to many people conjures a picture of a man. If an author built empathy for the character, letting the reader operate under her normal assumptions, and near the end of the story revealed that the doctor was a woman, readers who might have been predisposed to stereotype a woman doctor might actually have the chance to connect with the character and, upon the revelation, experience her own revelation about her stereotyping behavior.

Other ways that literature can transform: Laura Bates (2012), professor of English at Indiana State University, works with solitary confinement inmates, having them read and reflect on Shakespeare plays (see her TEDxUCLA talk, information below, for a transformative viewing experience), and Bryan Doerries (Zuger, 2015) finds transformative impact among veterans when viewing and discussing Greek tragedies, like Sophocles’ Ajax.

If Almeria’s opening line of the 1697 play The Mourning Bride by William Congreve, “Music hath charms to soothe a savage breast,” is a statement of the transformative power of music, then the transformative power of experience-taking with Ajax, whose dear friend Achilles has been killed in battle and who subsequently falls into despondency and rage, is surely as evocative.
References

GREAT TEACHING

What do Students Learn From in a Lecture?

by Jill Lambeth, Ph.D. & Amber Tardif, B.A.

How much information does a student actually retain from a lecture? And how can one assist students to retain more information during the learning process? Concepts from Lambeth’s (2011) review of a learner-centered environment are used to set the foundation for the Best Teaching Practices that assist in increasing students’ retention rate.

The use of lecture is one of the most common forms of pedagogical techniques (Knewstubb & Bond, 2009; Ko & Rossen, 2008), but the information students retain from a lecture is less than ten percent (Dale, 1969; Steele, 2009). A lecture-based format uses the transmission model of communication, which allows students to be passive participants rather than being active participants during the learning process. The Learning Pyramid (See Figure 1) demonstrates that when students are passive participants in the learning environment their retention rate of the information is lower (Dale, 1969).

Figure 1:

The Learning Pyramid

(Dale, 1969, p. 43)
For students to be able to retain higher amounts of information in the learning environment the professor needs to shift their classroom from a transmission model of communication to an interactive model. A shift to an interactive model might be hard for some faculty who are not familiar with different types of pedagogical techniques or don’t have the available resources (Vega & Tayler, 2005), but the transition puts more of an emphasis on the students’ retention of knowledge and helps professors in assessing students more efficiently.

An interactive pedagogical technique that research shows increases students’ success by allowing students to be active participants in the learning environment is a learner-centered teaching approach (Kember, 1997; Sarasin, 1999). A learner-centered environment is not only useful for boosting interaction between students and teachers, but this concept is also about promoting a supportive, collaborative, and positive culture within the classroom (Bayles, Kim, Mahendra, & Tomoeda, 2005).

But just as professors might not be comfortable using the learner-centered interactive pedagogical technique, students might also not be comfortable since they are used to being passive learners (Jenson, 2005). To allow students to be comfortable within a learner-centered class and have a better understanding of the learner-centered approach, the professor should have students be active participants during each stage of the course; planning, course learning activities, and assessment through the use of discussion, practice and teaching others.

Best Teaching Practices

Planning Stage

The planning stage is where most professors don’t allow students to be active participants. Instead, the professor wants to plan the course and use the transmission model of communication and “lecturing” the students by going through the syllabus and telling them what they need to learn in the course. Instead of using a transmission model for planning a course there are various tactics that may be used to provide a learner-centered approach in the planning stage:

1. Announce on the first day that this is a learner-centered course and have a group discussion on what is a learner-centered environment and what roles students and professors play in a learner-centered environment.
2. Allow students to determine the learning goals of the course. In order to assist students in this process, a professor could provide a basic outline of the course and discuss what knowledge students need to learn from the course. This insight would allow students in setting their learning goals for the course.
3. Allow students to assist in writing the syllabus and have input on the course activities and types of assessment.
By allowing students to be apart of the planning stage through discussing the dynamics of a learner-centered environment, setting the course goals, and assisting with creating the syllabus, students will begin to have an active role in the next stage of the process.

Course Learning Activities Stage

The next phase of the learning process is creating course activities that allow students to retain more information. These types of learning activities will allow students to be active participants in this stage of the learning process.

1. Create activities that provide group discussion. For example have students in groups define key concepts, debate issues or review case studies.
2. Create activities that allow students to “practice by doing.” For example: service learning, conducting research, and/or solving critical problems.
3. Create activities where students are able to teach each other. Instead of having a student select a section/chapter of the book and “lecture” the class, a professor may use the jigsaw teaching strategy, where each student is one piece of the learning activity, and allow each student to participate together in teaching the material to each other. As noted by Marhamah and Mulyadi (2013), the jigsaw strategy emphasizes a cooperative learning environment by providing learners opportunities to actively participate and assist each other in building comprehension.

By allowing students to be active participants through various types of activities, students will have higher retention rates, be better equipped to meet the objectives of the course, and retain more information that will assist with their success in the assessment stage.

Assessment Stage

In the transmission model of teaching, in order to determine if a student learned the information, a professor often has students take a comprehensive test and/or write a paper, but this type of transmission method only shows if the student learned the material and not if they retained the material for future use. When students are active participants in the assessment process during the learning process it allows for the professor to continue and assess whether the students are meeting the learning objectives.

By using these learner-centered approaches to assess students’ understanding of the material a professor can determine if students are retaining the material.

1. Assessing students through group discussion. At the beginning of the each class the professor can ask the students three questions about the
material that will be covered in class that day. Then at the end of class have the students discuss in groups their answer to the questions and have students share their answers with the class.

2. Assessing students through allowing them to practice by doing. For example, instead of giving students a content-driven test to determine their knowledge of key concepts, one may use a more interactive approach and allow students to write their own questions and answers to a test. Then instead of memorizing the answers, the students are practicing answering questions for the test.

3. Assessing students through teaching others, a professor can determine which concepts students have not grasped and have students discuss those concepts in groups and then teach the concepts to the class.

Through using different forms of interactive assessments instead of just memorizing answers or writing a paper, students will able to retain additional knowledge.

As more professors begin to switch to a learner-centered interactive approach, students will begin to feel comfortable being active participants in the planning, learning, and assessment stages of a course. By using the learner-centered interactive approach, the professors and students will learn and grow together through stimulating, thought-provoking experiences which will overall allow students to boost their critical thinking and collaborating skills and retain a higher percent of information than they would retain from a lecture.
References

READINGS OF INTEREST

Critical Thinking in Laboratories and Beyond

By Mark Walvoord, M.S.

The University of Central Oklahoma has a strategy of providing transformative teaching and learning experiences to students so they graduate as engaged, critical thinkers (University of Central Oklahoma, 2013). But how can we train our students to be critical thinkers? A recent paper in the Proceedings of the National Academy of Sciences (Holmes, Wieman, & Bonn, 2015) describes one method that showed evidence of students’ increased critical thinking skills in an introductory physics laboratory course. Even better, the authors hypothesize that this method should work in a “very wide range of instructional settings: any venue that contains opportunities to make decisions based on comparisons” (p. 11203).

We’ll define critical thinking in its simplest form as using data to make decisions. Scientists regularly use critical thinking skills to compare data (their own and others’) and to make improvements to their data collection and experimental models. To help, they use tools of analysis, like statistical tests, to help them understand the data and make the best decisions. This process is iterative as they continue to strive for the best answers to their original observations and questions. “Students ought to be explicitly exposed to how experts engage in critical thinking in each specific discipline” (p. 11199).

Unfortunately, a professor can’t just demonstrate this process and expect students to fully understand it. Instead, students must practice the critical thinking process. In the authors’ discipline of physics, laboratory courses provided the best place to test this hypothesis of increased critical thinking skills over a semester of practice, feedback, and more practice. (Insert shout-out here to at least three other places, besides a laboratory course, where UCO students can enhance critical thinking: 1. Your classroom! Keep up the good work. 2. The Office of High Impact Practices’ grants for Research, Creative and Scholarly Activities. 3. The Student Transformative Learning Record’s grants for student transformative learning projects.)

Students in the experimental group were given explicit instructions and were graded on their comparisons of multiple datasets using statistical tests like chi-square. Then, they were asked to decide what to do: Recollect data, question or change the model under which they collected data, improve collection methods then re-collect, etc. These explicit instructions were gradually removed over the semester, so that they were gone by week 16. The control group of students didn’t receive these explicit instructions, but performed the same data collection/experiments and chi-square analyses. The authors then evaluated
students’ lab notebooks where they had written all the details of their data collection, iterations of the experiments, and suggestions, changes, or critiques of procedures or models (p. 11202).

By week 16, when instructions to both groups were identical, “over half of the experimental group continued to make or propose changes to their data or methods,” compared to “almost none of the control group” (p. 11202). Few students wrote early in the semester about disagreements with or limitations to the model under which they collected data. However, by the end, over 75% of the students in the experimental group identified disagreements, while less than 20% of the control group did so. Even more telling is that the authors followed some students to the third experiment of their laboratory course the next semester, and the experimental subjects showed similar results, meaning they had “a sustained change in reasoning and epistemology” (p. 11203).

Whether in a physics lab, a biology lab, an English discussion section, or giving feedback to an independent study student, the application seems clear. Students who compare data, evidence, or arguments, then use those data to modify their procedures or position, and finally re-compare their new data, evidence, or arguments are given practice at critical thinking that they could carry with them past our walls and into the metropolitan area and the world. That’s a world I’ll feel more comfortable living in, so thanks for your work in training these transformed, critical thinkers.

References

References

The "Next" Adult Learning Principle in Andragogy

Bucky J. Dodd, Ph.D. & Len Bogner, Ed.D.

As lifelong learners we realize that the only constant in life is change, until we know all there is to be known, we will keep striving to understand. This principle of discovery is as true in the field of adult education as in any science or humanities.

As adult educators, we understand the educational environment for formalized learning has and continues to evolve, and we are the innovators that embrace the transformation to make learning flexible for our non-traditional students. We have moved from offering courses at a set time and place to an anytime, anywhere, any pace format. The focus of learning has changed from the teacher being the center of knowledge to a facilitator-learner relationship. It is more than technology that is forcing the evolution; it is a diverse set of change drivers that are shaping the education and learning ecosystem for adults.

This dynamic environment of change creates the need for a new principle to also address not only the conditions specific to the adult learner that define learning for adults, but also how the adult learner engages and connects with the environments and the contexts in which learning occurs. This extension also addresses key opportunities in the study of adult learning by representing a set of holistic principles that adapt reflect the conditions and influences of today’s learners.

Building on the six Adult Learning Principles of Malcolm Knowles, in his book The Adult Learner, which are:

1. Learner’s Need to Know
2. Self-Concept of the Learner
3. Prior Experience of the Learner
4. Readiness to Learn
5. Orientation to Learning
6. Motivation to Learn

We at the University of Central Oklahoma (UCO) would like to propose, the "Next" principle of Adult Learning. Simply stated we have collected and analyzed empirical evidence that suggest that "Adults seek flexible learning spaces and opportunities that meet their learning and life needs". We came to this proposal through the combined work, in Blended Education, of the Center...
for eLearning and Customized Education (CeCE), and the Adult Education and Safety Science (AESS) department.

CeCe and AESS will be presenting this “new principle” to the national convention of the American Association of Adult and Continuing Education (AAACE), to be held in OKC in November. To find out more about this evolution in Adult Education contact CeCE.